
Glaucio Vieira Miranda
Leandro Vagno de Souza
Ronaldo Rodrigues Coimbra
João Carlos Cardoso Galvão
Aurélio Vaz de Melo
Lauro José Moreira Guimarães
Felipe Oliveira Vilela

RESUMO

Com o objetivo de avaliar o comportamento de cultivares de milho de diferentes ciclos nas regiões da Zona da Mata e Triângulo Mineiro, nove ensaios de competição entre cultivares de milho de ciclos superprecece, precece e normal foram instalados pelo Programa Milho UFV em Coimbra, Ponte Nova e Capinópolis, nos anos agrícolas de 1998/1999 e 1999/2000. Em todos ensaios foram utilizados delineamentos em látice com duas repetições e avaliados 180 híbridos no total. A parcela foi constituída de duas linhas de 5 m de comprimento, espaçadas de 1,0 m. O comportamento dos cultivares foi contrastante em locais e anos, caracterizando interação anos x genótipos x ambientes. Entre todos os ensaios, o que apresentou a maior média foi o de ciclo precoce realizado em Coimbra, com 10.199 kg ha\(^{-1}\), e o cultivar com maior rendimento de grãos foi o HT 970556, com 12.132 kg ha\(^{-1}\). Os rendimentos de grãos obtidos pelas testemunhas foram superados em todos os ensaios por alguns cultivares, evidenciando a importância da avaliação e introdução contínua de novos cultivares. Concluiu-se que os programas de

1 Aceito para publicação em 03.10.2003.
2 Dep. de Fitotecnia/UFV, 36570-000 Viçosa, MG. E-mails: Glaucio@ufv.br; souzalv@hotmail.com; ronaldorcr@unitins.br; igalvão@ufv.br; valdemeloufv@hotmail.com.br; lauroguimaraes@bol.com.br; fovilela@yahoo.com.br
melhoramento brasileiros têm disponibilizado cultivares com alto potencial produtivo; o comportamento dos cultivares deve ser avaliado em mais de um ano e maior número de locais; as altas médias de rendimento de grãos obtidas em dado local não são repetidas em outros locais e em outros anos e para a indicação mais precisa de qual cultivar plantar, deve-se considerar o seu desempenho na região específica de cultivo, buscando otimizar o potencial produtivo do cultivar.

Palavras-chave: Zea mays, híbridos, interação genótipos x ambientes, rendimento.

ABSTRACT

PERFORMANCE OF MAIZE CULTIVARS IN MINAS GERAIS, BRAZIL – 1998 AND 1999

The objective of this paper was to evaluate maize cultivars at different maturity cycles in the tropical lowland areas (under 720 m) in Minas Gerais, Brazil. Nine experiments using superprecocious, precocious and normal cultivars were evaluated by Programa Milho at the Experimental Station in Coimbra, Ponte Nova, and Capinópolis, in 1998/1999 and 1999/2000. The experimental design was a lattice with two replications for each experiment. A total of 180 maize cultivars were evaluated in the experiments. The plot consisted of two 5 m long, 1.0 m spaced lines. Cultivar performance differed in places and years, characterizing years x genotypes x environment interaction. The precocious cultivar (Coimbra) presented the highest average (10.199 kg ha⁻¹) and the HT 970556 was the most productive (12.132 kg ha⁻¹). Grain yield obtained by the controls was surpassed in all assays by some cultivars, showing the importance of continuously evaluating and introducing new cultivars. It was concluded that Brazilian breeding programs have produced cultivars with a high genetic potential; cultivars’ performance must be evaluated over one year and at a larger number of places; the high grain yield averages obtained in a particular area are not repeated in other areas and years, and for a more precise indication of which cultivar to plant, its performance in its specific cultivation region must be taken into account to optimize its yield potential.

Keys words: Zea mays, hybrids, environment x genotype interaction, yield.

INTRODUÇÃO

A produção do milho (Zea mays L.), em níveis mundial e nacional, nas áreas aptas à cultura, não será suficiente para atender à demanda nas próximas décadas (2). Consequentemente, há risco para a segurança alimentar mundial, uma vez que este cereal é o mais plantado e utilizado diretamente nas alimentações humana e animal. A cultura do milho participa em mais de 30% do total de grãos produzido no Brasil (1). No entanto, como apesar de sua grande importância, os rendimentos de grãos
ainda estão muito aquém do potencial da cultura, comparativamente com outros países produtores, fica evidenciado o baixo rendimento de grãos, uma vez que nos Estados Unidos o rendimento de grãos em 1999/2000 ficou em torno de 8.500 kg.ha\(^{-1}\) e no Brasil a média ficou próximo a 3.000 kg.ha\(^{-1}\) (I).

Como o agronegócio das sementes de milho possui o maior valor entre todas as grandes culturas, e a iniciativa privada tem atuado de forma maciça, existe grande disponibilidade de cultivares para alta produção, mas que demandam alta quantidade de insumos para expressar o potencial genético.

Em determinado ambiente, a manifestação fenotípica é o resultado da manifestação do genótipo sob influência do meio. Entretanto, quando se considera uma série de ambientes, detecta-se efeito adicional, resultante da interação destes (II). Em virtude da grande amplitude de plantio da lavoura de milho no Brasil, é muito difícil desenvolver cultivares que atendam a todas as regiões, uma vez que essas são altamente contrastantes, seja devido ao clima, solo, nível tecnológico empregado nas propriedades, mercado, ou e as condições socioculturais dos produtores. Diante disso, o programa de melhoramento de milho da Universidade Federal de Viçosa, (Programa Milho® UFV), instala anualmente diversos ensaios com novos cultivares em várias regiões de Minas Gerais.

A escolha certa do cultivar a ser plantado é fundamental para que o produtor obtenha altas produtividades e lucros satisfatórios no desenvolvimento da atividade agrícola. Porém, como a oferta dePor isso, é importante verificar periodicamente o desempenho agronômico dos principais cultivares indicados para regiões de cultivo do milho, o que poderá trazer, ao produtor, informações valiosas sobre quais cultivares deverão ser utilizados (II). Dessa forma, para otimizar o potencial produtivo, torna-se necessária à avaliação em vários ambientes, buscando identificar os cultivares que melhor se adaptam a determinado ambiente.

O objetivo deste trabalho foi avaliar cultivares de milho de diferentes ciclos nas regiões da Zona da Mata e Triângulo Mineiro.

MATERIAL E MÉTODOS

QUADRO 1 – Cultivares de milho de diferentes ciclos de vida e suas respectivas testemunhas (T), avaliadas em Coimbra, Ponte Nova e Capinópolis - MG, nos anos agrícolas de 1998/1999 e 1999/2000

<table>
<thead>
<tr>
<th>Superprecoce</th>
<th>Precoce</th>
<th>Normal</th>
<th>Superprecoce</th>
<th>Precoce</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>981-SP</td>
<td>982-SP</td>
<td>AGROMEN 3E3</td>
<td>AGROMEN 3E4</td>
<td>97 HT 15bC</td>
<td>P 30F80</td>
</tr>
<tr>
<td>AG 3010 (T)</td>
<td>AG 6016</td>
<td>AG 5016</td>
<td>AG 3010 (T)</td>
<td>AG 6016</td>
<td>AG 5016</td>
</tr>
<tr>
<td>AGROMEN 3E4</td>
<td>AGROMEN 2E2</td>
<td>97 HT 12 b C</td>
<td>98 HS 16B</td>
<td>97 HT 129 QPM</td>
<td></td>
</tr>
<tr>
<td>AGROMEN 3E3</td>
<td>AG 8014</td>
<td>984-N</td>
<td>97 HT 9 a C</td>
<td>AG 6690</td>
<td>97 HT 131 QPM</td>
</tr>
<tr>
<td>AGROMEN 3B4</td>
<td>AGROMEN 2E2</td>
<td>985-N</td>
<td>97 HT 98 A</td>
<td>AS 1533</td>
<td>97 HT 31 a C</td>
</tr>
<tr>
<td>BRS 3101</td>
<td>C 806 (T)</td>
<td>AS 3466</td>
<td>AG 4051</td>
<td>97HT14C</td>
<td>AS 3466</td>
</tr>
<tr>
<td>C 901 (T)</td>
<td>C 929</td>
<td>AL 25/XV</td>
<td>AG 6016</td>
<td>AX 2560</td>
<td>AL 25</td>
</tr>
<tr>
<td>CD 2324-10</td>
<td>CD 3121</td>
<td>AL MANDURI/XV</td>
<td>C 901(T)</td>
<td>C44(T)</td>
<td>AX 4545</td>
</tr>
<tr>
<td>CO 9560</td>
<td>CO 32</td>
<td>BRS 2110</td>
<td>C806(T)</td>
<td>C747</td>
<td>BR 106</td>
</tr>
<tr>
<td>CX 9801</td>
<td>CX 9855</td>
<td>CX 9610</td>
<td>CX 9856</td>
<td>C 333B (T)</td>
<td>CD 3211</td>
</tr>
<tr>
<td>DINA 766</td>
<td>DINA 1000</td>
<td>CATI AL30/I</td>
<td>CO 9150</td>
<td>CO 32</td>
<td>C333 B(T)</td>
</tr>
<tr>
<td>FT 5140</td>
<td>FT 5150</td>
<td>G 182 C</td>
<td>G 182 C</td>
<td>CX 9805</td>
<td>DINA 766</td>
</tr>
<tr>
<td>HATA 3013</td>
<td>HATA 3013</td>
<td>EXP 2</td>
<td>FT 7340</td>
<td>FT 5140</td>
<td>DINA 1000</td>
</tr>
<tr>
<td>HD 951128</td>
<td>HT 47 C</td>
<td>HD 9555</td>
<td>HT 7105-3</td>
<td>MTC 813N</td>
<td>HT 7105-3</td>
</tr>
<tr>
<td>HT 997</td>
<td>HT 971011</td>
<td>HT 970556</td>
<td>MTC 837 U</td>
<td>HT 97 1011</td>
<td>P 30K75</td>
</tr>
<tr>
<td>MTL 9742</td>
<td>MTL 9729</td>
<td>IAC 0410E</td>
<td>NB 5218</td>
<td>MTC 817 U</td>
<td>PL 6840</td>
</tr>
<tr>
<td>NB 3047</td>
<td>MTL 9877</td>
<td>IAC PARIQUERA</td>
<td>P3081</td>
<td>MTC 833 N</td>
<td>PL 6880</td>
</tr>
<tr>
<td>P 3081</td>
<td>P 3081</td>
<td>MTL 9744</td>
<td>MTL 9826</td>
<td>MTL 9826</td>
<td>SH-54 Ex78</td>
</tr>
<tr>
<td>SHS 4050</td>
<td>SHS 5050</td>
<td>MTL 9826</td>
<td>P3081</td>
<td>MTL 9826</td>
<td>SH-54 Ex78</td>
</tr>
<tr>
<td>SHS 5050</td>
<td>SHS 4050</td>
<td>MTL 9826</td>
<td>P3071</td>
<td>MTL 9826</td>
<td>SH-54 Ex78</td>
</tr>
<tr>
<td>SHS 5050</td>
<td>SHS 4050</td>
<td>MTL 9826</td>
<td>P3021</td>
<td>MTL 9826</td>
<td>SH-54 Ex78</td>
</tr>
<tr>
<td>XB 4013</td>
<td>XB 7070</td>
<td>R&G 01E</td>
<td>R&G 02E</td>
<td>SHS 5050</td>
<td>P 3041(T)</td>
</tr>
<tr>
<td>XB 7070</td>
<td>XB 7070</td>
<td>XB 7070</td>
<td>XB 7070</td>
<td>XB 7070</td>
<td>XB 7070</td>
</tr>
<tr>
<td>XL 269</td>
<td>XL 269</td>
<td>Z 85E02</td>
<td>TR 63</td>
<td>TR 63</td>
<td>PL 6403</td>
</tr>
<tr>
<td>Z 8392</td>
<td>Z 8392</td>
<td>Z 85E03</td>
<td>Z 8330</td>
<td>Z 8330</td>
<td>PL 6440</td>
</tr>
<tr>
<td>Z 8330</td>
<td>Z 8330</td>
<td>Z 85E50</td>
<td>Z 8392</td>
<td>Z 8392</td>
<td>PL 6443</td>
</tr>
</tbody>
</table>

Continua...
QUADRO 2 – Continuação.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Superprecoce</td>
<td>Precoce</td>
</tr>
<tr>
<td>XL 357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL 550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z 8392 (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z 8466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z 8410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z 8420</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nos ensaios conduzidos em 1998/1999, o delineamento experimental utilizado foi látice 6 x 6 nos experimentos com cultivares de ciclo normal e superprecoce, e de 6 x 7 no de ciclo precoce. Em 1999/2000, os delineamentos experimentais utilizados foram os látices 6 x 6, 7 x 7 e 6 x 5 para os de ciclos superprecoce, precoce e normal, respectivamente. Em todos os ensaios foram utilizadas duas repetições, sendo a parcela experimental constituída de duas linhas de 5 m de comprimento, espaçadas de 1 m, tendo uma área útil de 10 m², aproveitadas integralmente na colheita. A adubação de plantio foi de 300 kg.ha⁻¹ da formulação 04-14-08 nos ensaios conduzidos em Coimbra e Ponte Nova. Nos conduzidos em Capinópolis foram utilizados 300 kg.ha⁻¹ da fórmula 04-30-16. A adubação de cobertura foi realizada quando os cultivares atingiram o estádio de seis folhas, em uma única dose de 40 kg.ha⁻¹ de nitrogênio, utilizando o sulfato de amônia como fonte. Em 1998/1999, nos ensaios conduzidos em Coimbra, foi utilizada irrigação suplementar. Os tratos culturais foram realizados sempre que necessários, de acordo com as recomendações técnicas para a cultura do milho (3).

Entre as características avaliadas em cada ensaio estão o rendimento de grãos (kg.ha⁻¹), florescimento masculino (dias após a emergência) e alturas de planta e de espigas (cm).

A colheita foi realizada quando todas plantas da parcela se encontravam totalmente secas. O peso de grãos obtido foi corrigido para 13% de umidade e, para estande inicial, utilizando o método de Vencovsky e Barriga (12). As análises estatísticas foram feitas utilizando o programa estatístico SAEG (10). O procedimento para comparação múltipla
empregado foi o teste de t, em que a DMS é dada por:
\[DMS = t(v, \alpha/2) \sqrt{\frac{V(D)}{r}} = t(v, \alpha/2) \sqrt{\frac{QME}{r}}. \]

RESULTADOS E DISCUSSÃO

Cultivares de ciclo superprecoce

Os resultados obtidos com os cultivares de ciclo superprecoce, que superaram a média de rendimento de grãos dos ensaios conduzidos em Coimbra–MG, estão no Quadro 2.

QUADRO 2 - Médias do rendimento de grãos (RG), florescimento (FM), altura de planta (AP) e altura de espigas (AE) apresentadas pelos cultivares de milho de ciclo superprecoce que superaram a média de peso de grãos dos ensaios conduzidos em Coimbra–MG, nos anos agrícolas de 1998/1999 e 1999/2000

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>RG (kg.ha(^{-1}))</th>
<th>FM Dias</th>
<th>AP cm</th>
<th>AE (cm)</th>
<th>cultivares</th>
<th>RG (kg.ha(^{-1}))</th>
<th>FM Dias</th>
<th>AP cm</th>
<th>AE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRS 3101</td>
<td>12032</td>
<td>63</td>
<td>252</td>
<td>154</td>
<td>CD 3211</td>
<td>7825</td>
<td>57</td>
<td>181</td>
<td>87</td>
</tr>
<tr>
<td>DINA 766</td>
<td>11238</td>
<td>58</td>
<td>246</td>
<td>135</td>
<td>DINA 766</td>
<td>7495</td>
<td>58</td>
<td>185</td>
<td>88</td>
</tr>
<tr>
<td>HT TR61</td>
<td>11232</td>
<td>62</td>
<td>252</td>
<td>150</td>
<td>MTC 813N</td>
<td>7358</td>
<td>59</td>
<td>184</td>
<td>88</td>
</tr>
<tr>
<td>982-SP</td>
<td>10510</td>
<td>65</td>
<td>249</td>
<td>140</td>
<td>C 901(T)</td>
<td>7169</td>
<td>57</td>
<td>148</td>
<td>64</td>
</tr>
<tr>
<td>FT 5140</td>
<td>10478</td>
<td>58</td>
<td>243</td>
<td>136</td>
<td>C929</td>
<td>7040</td>
<td>58</td>
<td>156</td>
<td>58</td>
</tr>
<tr>
<td>AG 6018</td>
<td>10442</td>
<td>58</td>
<td>251</td>
<td>139</td>
<td>84E80</td>
<td>7000</td>
<td>58</td>
<td>172</td>
<td>79</td>
</tr>
<tr>
<td>CX9807</td>
<td>10357</td>
<td>60</td>
<td>230</td>
<td>123</td>
<td>TR 63</td>
<td>6989</td>
<td>60</td>
<td>193</td>
<td>77</td>
</tr>
<tr>
<td>CO 9150</td>
<td>10328</td>
<td>59</td>
<td>251</td>
<td>133</td>
<td>97 HT 19 A</td>
<td>6787</td>
<td>60</td>
<td>186</td>
<td>82</td>
</tr>
<tr>
<td>XL 269</td>
<td>10275</td>
<td>58</td>
<td>235</td>
<td>136</td>
<td>AS 3601</td>
<td>6662</td>
<td>60</td>
<td>175</td>
<td>85</td>
</tr>
<tr>
<td>AGROMEN 3E3</td>
<td>10152</td>
<td>58</td>
<td>220</td>
<td>125</td>
<td>C909(T)</td>
<td>6612</td>
<td>57</td>
<td>184</td>
<td>79</td>
</tr>
<tr>
<td>CX 9801</td>
<td>10127</td>
<td>58</td>
<td>223</td>
<td>127</td>
<td>SH-59 Ex31</td>
<td>6582</td>
<td>59</td>
<td>166</td>
<td>77</td>
</tr>
<tr>
<td>Z 83E30</td>
<td>10060</td>
<td>60</td>
<td>248</td>
<td>138</td>
<td>P 3081</td>
<td>6579</td>
<td>56</td>
<td>156</td>
<td>70</td>
</tr>
<tr>
<td>CO 9560</td>
<td>10006</td>
<td>62</td>
<td>232</td>
<td>130</td>
<td>C806(T)</td>
<td>6474</td>
<td>57</td>
<td>156</td>
<td>56</td>
</tr>
<tr>
<td>CX 9855</td>
<td>9988</td>
<td>58</td>
<td>222</td>
<td>124</td>
<td>97 HT 98 A</td>
<td>6444</td>
<td>60</td>
<td>183</td>
<td>84</td>
</tr>
<tr>
<td>CD 2324-10</td>
<td>9961</td>
<td>59</td>
<td>272</td>
<td>180</td>
<td>SHS 5050</td>
<td>6403</td>
<td>58</td>
<td>177</td>
<td>84</td>
</tr>
<tr>
<td>HT 9A97</td>
<td>9957</td>
<td>60</td>
<td>237</td>
<td>146</td>
<td>CO 9150</td>
<td>6296</td>
<td>60</td>
<td>181</td>
<td>99</td>
</tr>
<tr>
<td>XB 4013</td>
<td>9950</td>
<td>58</td>
<td>241</td>
<td>130</td>
<td>PL 6001</td>
<td>6173</td>
<td>59</td>
<td>193</td>
<td>95</td>
</tr>
<tr>
<td>Z 8392</td>
<td>9810</td>
<td>58</td>
<td>230</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média*</td>
<td>9805</td>
<td>59</td>
<td>237</td>
<td>131</td>
<td>Média*</td>
<td>6045</td>
<td>58</td>
<td>166</td>
<td>73</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>C.V. (%)</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.M.S. (5%)</td>
<td>971</td>
<td></td>
<td></td>
<td></td>
<td>D.M.S. (5%)</td>
<td>1825</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Média calculada a partir do rendimento de grãos (kg.ha\(^{-1}\)) dos 36 cultivares de ciclo superprecoce
No ano agrícola de 1998/1999, o cultivar BRS 3101 apresentou a maior média de rendimento de grãos, 12.032 kg.ha\(^{-1}\), não diferindo significativamente de DINA 766 (11.238 kg.ha\(^{-1}\)) e HT TR61 (11.232 kg.ha\(^{-1}\)). O HT TR61 (11.232 kg.ha\(^{-1}\)) não diferiu significativamente dos que produziram até 10.275 kg.ha\(^{-1}\). Nenhuma das testemunhas alcançou a média de rendimentos de grãos do ensaio, mostrando o potencial dos novos cultivares superpreoces. Com relação ao florescimento, a média geral dos cultivares foi de 59 dias após a emergência, sendo a maior média apresentada por BRS 3101. A altura de planta média foi de 237 cm, e a altura de espiga média foi de 131 cm.

No ano agrícola de 1999/2000, o cultivar CD 3211, com média de rendimento de grãos de 7.825 kg.ha\(^{-1}\), teve o melhor desempenho, seguido por DINA 766 (7.495 kg.ha\(^{-1}\)) e MTC 813N (7.358 kg.ha\(^{-1}\)), e todos não diferiram significativamente das testemunhas C 901 (7.169 kg.ha\(^{-1}\)) e C 806 (6.474 kg.ha\(^{-1}\)). Neste caso, observa-se o grande número de cultivares disponíveis para plantio na região. Naqueles que superaram a média de rendimento de grãos, o florescimento variou de 56 a 60 dias após a emergência, ficando na média de 58. As médias de alturas de plantas e espigas foram de 166 e 73 cm, respectivamente, as menores em todos os ensaios. Nos cultivares comuns, nos dois anos de avaliação, apenas DINA 766 e CO 9150 superaram a média de rendimento de grãos, mostrando boa estabilidade fenotípica. Gerage e Shioga (6), na avaliação estadual de cultivares de milho, safra de 1997/1998, no Estado do Paraná, constataram que o cultivar DINA 766 alcançou a maior média de rendimento de grãos, com 9.224 kg.ha\(^{-1}\), não diferindo significativamente de P 3041, com 9.361 kg.ha\(^{-1}\), e C 333, com 9.300 kg.ha\(^{-1}\).

As médias de cada característica avaliada nos cultivares de ciclo superprecoce, nos ensaios conduzidos em Capinópolis–MG, encontram-se no Quadro 3.

Em 1998/1999, o cultivar CO 9150 foi o que alcançou o melhor rendimento de grãos, com média de 6.983 kg.ha\(^{-1}\), não se diferenciando significativamente dos cultivares que produziram até 5.868 kg.ha\(^{-1}\), todos superando a testemunha de melhor rendimento, AG 3010, com a média de 5.751 kg.ha\(^{-1}\). O início do florescimento masculino variou de 50 a 54 dias após a emergência, com média de 52 dias. As médias de altura de planta e espiga foram de 224 e 119 cm, respectivamente. Em 1999/2000, os cultivares que superaram a média de rendimento do ensaio não diferiram estatisticamente, sobressaindo o cultivar MTC 813N, com média de rendimento de 7.515 kg.ha\(^{-1}\). O início do florescimento variou de 47 a 54 dias após a emergência, com média de 51 dias. Quanto às alturas de planta e espigas, as médias foram de 195 e 102 cm, respectivamente. Dos cultivares avaliados nos dois anos, somente CO 9150, CO 9560, Z 8392,
SHS 4050 e SHS 5050 apresentaram rendimentos superiores aos das médias gerais.

QUADRO 3 - Médias do rendimento de grãos (RG), florescimento (FM), altura de planta (AP) e altura de espigas (AE), apresentadas pelos cultivares de milho de ciclo superprecepo que superaram a média de peso de grãos dos ensaios conduzidos em Capinópolis–MG, nos anos agrícolas de 1998/1999 e 1999/2000

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>RG (kg.ha<sup>-1</sup>)</th>
<th>FM Dias</th>
<th>AP (cm)</th>
<th>AE (cm)</th>
<th>Cultivares</th>
<th>RG (kg.ha<sup>-1</sup>)</th>
<th>FM Dias</th>
<th>AP (cm)</th>
<th>AE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 9150</td>
<td>6983</td>
<td>53</td>
<td>235</td>
<td>118</td>
<td>MTC 813N</td>
<td>7515</td>
<td>51</td>
<td>191</td>
<td>96</td>
</tr>
<tr>
<td>CO 9560</td>
<td>6872</td>
<td>52</td>
<td>228</td>
<td>123</td>
<td>TR 63</td>
<td>7152</td>
<td>55</td>
<td>209</td>
<td>103</td>
</tr>
<tr>
<td>Z 83E30</td>
<td>6871</td>
<td>53</td>
<td>218</td>
<td>123</td>
<td>CO 9150</td>
<td>7127</td>
<td>54</td>
<td>213</td>
<td>107</td>
</tr>
<tr>
<td>SHS 4050</td>
<td>6796</td>
<td>53</td>
<td>210</td>
<td>115</td>
<td>84E80</td>
<td>7020</td>
<td>53</td>
<td>191</td>
<td>102</td>
</tr>
<tr>
<td>SHS 5070</td>
<td>6615</td>
<td>52</td>
<td>218</td>
<td>123</td>
<td>97 HT 19 A</td>
<td>6995</td>
<td>53</td>
<td>211</td>
<td>106</td>
</tr>
<tr>
<td>CX9807</td>
<td>6343</td>
<td>51</td>
<td>230</td>
<td>113</td>
<td>DINA 766</td>
<td>6870</td>
<td>51</td>
<td>199</td>
<td>111</td>
</tr>
<tr>
<td>AGROMEN 3E4</td>
<td>6192</td>
<td>52</td>
<td>218</td>
<td>125</td>
<td>97 HT 98 A</td>
<td>6792</td>
<td>54</td>
<td>214</td>
<td>113</td>
</tr>
<tr>
<td>XL 269</td>
<td>6024</td>
<td>52</td>
<td>215</td>
<td>128</td>
<td>SHS 5050</td>
<td>6740</td>
<td>48</td>
<td>191</td>
<td>102</td>
</tr>
<tr>
<td>XB 4013</td>
<td>6022</td>
<td>50</td>
<td>215</td>
<td>115</td>
<td>SH-54 Ex78</td>
<td>6691</td>
<td>47</td>
<td>184</td>
<td>99</td>
</tr>
<tr>
<td>SHS 5050</td>
<td>5968</td>
<td>52</td>
<td>230</td>
<td>123</td>
<td>FT 5140</td>
<td>6632</td>
<td>52</td>
<td>204</td>
<td>108</td>
</tr>
<tr>
<td>HATA 2025</td>
<td>5832</td>
<td>53</td>
<td>230</td>
<td>120</td>
<td>MTC 837 U</td>
<td>6518</td>
<td>51</td>
<td>181</td>
<td>93</td>
</tr>
<tr>
<td>HATA 3013</td>
<td>5819</td>
<td>54</td>
<td>230</td>
<td>115</td>
<td>NB 5218</td>
<td>6464</td>
<td>52</td>
<td>189</td>
<td>97</td>
</tr>
<tr>
<td>AG 3010 (T)</td>
<td>5751</td>
<td>50</td>
<td>230</td>
<td>113</td>
<td>SHS 4050</td>
<td>6445</td>
<td>51</td>
<td>190</td>
<td>97</td>
</tr>
<tr>
<td>AGROMEN 3E3</td>
<td>5702</td>
<td>54</td>
<td>210</td>
<td>108</td>
<td>SH-59 Ex31</td>
<td>6438</td>
<td>53</td>
<td>209</td>
<td>110</td>
</tr>
<tr>
<td>HD 951128</td>
<td>5662</td>
<td>53</td>
<td>220</td>
<td>118</td>
<td>CO 9560</td>
<td>6405</td>
<td>52</td>
<td>202</td>
<td>102</td>
</tr>
<tr>
<td>982-SP</td>
<td>5626</td>
<td>54</td>
<td>230</td>
<td>125</td>
<td>CD 3211</td>
<td>6379</td>
<td>52</td>
<td>203</td>
<td>98</td>
</tr>
<tr>
<td>Z 8392</td>
<td>5623</td>
<td>51</td>
<td>228</td>
<td>115</td>
<td>C929</td>
<td>6341</td>
<td>50</td>
<td>188</td>
<td>88</td>
</tr>
<tr>
<td>HT 997</td>
<td>5588</td>
<td>53</td>
<td>233</td>
<td>128</td>
<td>97 HT 12 b C</td>
<td>6247</td>
<td>50</td>
<td>211</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C 901(T)</td>
<td>6235</td>
<td>49</td>
<td>184</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Z 8392</td>
<td>6213</td>
<td>49</td>
<td>193</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AG 6016</td>
<td>6206</td>
<td>52</td>
<td>191</td>
<td>99</td>
</tr>
<tr>
<td>Média</td>
<td>5505</td>
<td>52</td>
<td>224</td>
<td>119</td>
<td>Média</td>
<td>6198</td>
<td>51</td>
<td>195</td>
<td>102</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>C.V. (%)</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.M.S. (5%)</td>
<td>1122</td>
<td></td>
<td></td>
<td></td>
<td>D.M.S. (5%)</td>
<td>1538</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Média calculada a partir do rendimento de grãos (kg.ha⁻¹) dos cultivares de ciclo superprecepo

No Quadro 4 estão as médias das características avaliadas nos cultivares de ciclo superprecepo, que superaram as médias de rendimento de grãos do ensaio conduzido em Ponte Nova–MG.
QUADRO 4 – Médias do rendimento de grãos (RG), florescimento (FM), altura de planta (AP) e altura de espigas (AE) apresentadas pelos cultivares de milho de ciclo superprecoce que superaram as médias de peso de grãos dos ensaios conduzidos em Ponte Nova, MG, no ano agrícola de 1998/1999

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>RG (kg.ha⁻¹)</th>
<th>FM Dias</th>
<th>AP (cm)</th>
<th>AE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX9807</td>
<td>8363</td>
<td>49</td>
<td>195</td>
<td>110</td>
</tr>
<tr>
<td>Z 83E30</td>
<td>7376</td>
<td>49</td>
<td>188</td>
<td>113</td>
</tr>
<tr>
<td>FT 5140</td>
<td>7008</td>
<td>49</td>
<td>185</td>
<td>123</td>
</tr>
<tr>
<td>XB 7070</td>
<td>6952</td>
<td>49</td>
<td>198</td>
<td>123</td>
</tr>
<tr>
<td>SHS 5050</td>
<td>6856</td>
<td>49</td>
<td>188</td>
<td>113</td>
</tr>
<tr>
<td>BRS 3101</td>
<td>6766</td>
<td>49</td>
<td>193</td>
<td>143</td>
</tr>
<tr>
<td>HT 9A97</td>
<td>6485</td>
<td>49</td>
<td>190</td>
<td>103</td>
</tr>
<tr>
<td>DINA 766</td>
<td>6420</td>
<td>49</td>
<td>178</td>
<td>108</td>
</tr>
<tr>
<td>HD 951128</td>
<td>6386</td>
<td>49</td>
<td>153</td>
<td>90</td>
</tr>
<tr>
<td>SHS 4050</td>
<td>6275</td>
<td>49</td>
<td>178</td>
<td>106</td>
</tr>
<tr>
<td>XB 4013</td>
<td>6242</td>
<td>49</td>
<td>205</td>
<td>110</td>
</tr>
<tr>
<td>CX 9801</td>
<td>6197</td>
<td>49</td>
<td>188</td>
<td>108</td>
</tr>
<tr>
<td>CO 9150</td>
<td>5923</td>
<td>49</td>
<td>223</td>
<td>133</td>
</tr>
<tr>
<td>P 3081</td>
<td>5872</td>
<td>49</td>
<td>198</td>
<td>118</td>
</tr>
<tr>
<td>CO 9560</td>
<td>5758</td>
<td>49</td>
<td>208</td>
<td>120</td>
</tr>
<tr>
<td>C 806 (T)</td>
<td>5739</td>
<td>49</td>
<td>205</td>
<td>114</td>
</tr>
<tr>
<td>MTL 9742</td>
<td>5653</td>
<td>49</td>
<td>200</td>
<td>108</td>
</tr>
<tr>
<td>XL 269</td>
<td>5612</td>
<td>49</td>
<td>203</td>
<td>123</td>
</tr>
<tr>
<td>Média</td>
<td>5580</td>
<td>49</td>
<td>193</td>
<td>114</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.M.S.(5%)</td>
<td>2535</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Média calculada a partir do rendimento de grãos (kg ha⁻¹) dos cultivares de ciclo superprecoce

Em 1998/1999, o cultivar com melhor rendimento de grãos foi o CX 9807, com média de 8.363 kg.ha⁻¹, que não diferiu significativamente dos que produziram até 5.872 kg.ha⁻¹, superando a testemunha C 806, com 5.739 kg.ha⁻¹. Em relação ao florescimento masculino, os cultivares foram mais precoces em relação aos outros dois locais de avaliação, ocorrendo aos 49 dias após a emergência. As médias obtidas das alturas de planta e espiga foram de 193 e 114 cm, respectivamente.

Em 1998/1999, as médias dos cultivares de ciclo superprecoce foram de 9.805 kg.ha⁻¹ em Coimbra (altitude de 720 m), 5.505 kg.ha⁻¹ em
Capinópolis (altitude de 620 m) e 5.580 kg.ha\(^{-1}\) em Ponte Nova (altitude de 430 m). Em 1999/2000, foram de 6.045 kg.ha\(^{-1}\), em Coimbra, e de 6.198 kg.ha\(^{-1}\), em Capinópolis. Isso evidencia que tanto na Zona da Mata quanto no Triângulo Mineiro os cultivares mostraram desempenho produtivo satisfatório, sendo possível indicar cultivares adaptados para ambas às áreas. Os resultados evidenciaram a importância da avaliação dos cultivares em cada região para qual será feita à indicação. Para otimizar o progresso genético da cultura de milho, deve-se capitalizar o efeito da interação genótipos x ambientes, uma vez que anualmente diversos cultivares são disponibilizados para o mercado de sementes, sendo, em várias ocasiões, comercializados em regiões para as quais não apresentam adaptação satisfatória. Esse fato é comum em regiões de interesse secundário para o comércio de sementes, como a Zona da Mata, comprometendo o progresso genético da cultura no País.

Observa-se que em dado ano e local, existe a disponibilidade de diversos cultivares. No entanto, quando se considera a variação entre anos, a disponibilidade de cultivares superiores diminui bastante e, quando se consideram os dois anos e os três locais, apenas o cultivar CO 9150 superou as médias de rendimento de grãos em cada local, nos dois anos.

Cultivares de ciclo precoce

As médias das características avaliadas nos cultivares de ciclo precoce, que superaram as médias de rendimento de grãos do ensaio conduzido em Coimbra–MG, estão inseridas no Quadro 5.

No ensaio de Coimbra, no ano agrícola de 1998/1999, os cultivares de ciclo precoce com rendimento acima de 10.509 kg.ha\(^{-1}\) não diferiram significativamente do mais produtivo, P 30F33, com 11.711 kg.ha\(^{-1}\). Em média, o florescimento masculino começou aos 60 dias. O cultivar P 30F33 ficou entre os mais precoces, com 58 dias. As alturas de planta variaram de 213 a 255 cm, e as alturas de espigas, de 110 a 153 cm.

No ano agrícola de 1999/2000, os cultivares que produziram acima da média não diferiram significativamente, quanto ao rendimento de grãos. O florescimento masculino começou de 59 a 65 dias após a emergência, com média de 62 dias. O cultivar Z 8486, que apresentou a maior média de rendimento de grãos, foi um dos mais tardios com florescimento aos 63 dias após a emergência. A média da altura de plantas foi de 171 cm, e da altura de espiga, 77 cm.

As médias obtidas das características avaliadas nos cultivares de ciclo precoce, que superaram as médias de rendimento de grãos do ensaio conduzido em Capinópolis–MG, podem ser observadas no Quadro 6.
QUADRO 5 – Médias do rendimento de grãos (RG), florescimento (FM), altura de planta (AP) e altura de espigas (AE), apresentadas pelos cultivares de milho de ciclo precoce que superaram a média de peso de grãos dos ensaios conduzidos em Coimbra–MG, nos anos agrícolas de 1998/1999 e 1999/2000

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RG (kg.ha⁻¹)</td>
<td>FM Dias</td>
</tr>
<tr>
<td>P30F33</td>
<td>11711</td>
<td>58</td>
</tr>
<tr>
<td>XB 7011</td>
<td>11682</td>
<td>61</td>
</tr>
<tr>
<td>DINA 657</td>
<td>11459</td>
<td>60</td>
</tr>
<tr>
<td>CO 34</td>
<td>11309</td>
<td>58</td>
</tr>
<tr>
<td>XL 357</td>
<td>11235</td>
<td>58</td>
</tr>
<tr>
<td>Z 8466</td>
<td>11142</td>
<td>58</td>
</tr>
<tr>
<td>DINA 1000</td>
<td>11036</td>
<td>61</td>
</tr>
<tr>
<td>BRS 3060-A</td>
<td>10873</td>
<td>63</td>
</tr>
<tr>
<td>AS 3466</td>
<td>10841</td>
<td>58</td>
</tr>
<tr>
<td>XB 8010</td>
<td>10828</td>
<td>60</td>
</tr>
<tr>
<td>P 3041 (T)</td>
<td>10728</td>
<td>58</td>
</tr>
<tr>
<td>XL 550</td>
<td>10708</td>
<td>58</td>
</tr>
<tr>
<td>HT 47 C</td>
<td>10698</td>
<td>61</td>
</tr>
<tr>
<td>Z 84E10</td>
<td>10685</td>
<td>58</td>
</tr>
<tr>
<td>HT 971011</td>
<td>10660</td>
<td>60</td>
</tr>
<tr>
<td>CX 9856</td>
<td>10589</td>
<td>58</td>
</tr>
<tr>
<td>Z 84E20</td>
<td>10509</td>
<td>58</td>
</tr>
<tr>
<td>P 30F45</td>
<td>10435</td>
<td>60</td>
</tr>
<tr>
<td>AG 5011</td>
<td>10348</td>
<td>61</td>
</tr>
<tr>
<td>HT 7105-3</td>
<td>10316</td>
<td>61</td>
</tr>
<tr>
<td>XL 355</td>
<td>10237</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Média* 10199 60 237 128 Média* 6152 62 171 77

C.V. (%) 5 C.V. (%) 22
D.M.S. (5%) 1212 D.M.S. (5%) 2939

*Média calculada a partir do rendimento de grãos (kg.ha⁻¹) dos cultivares de ciclo precoce avaliados
<table>
<thead>
<tr>
<th>Cultivares</th>
<th>RG (kg.ha(^{-1}))</th>
<th>FM Dias</th>
<th>AP (cm)</th>
<th>AE (cm)</th>
<th>Cultivares</th>
<th>RG (kg.ha(^{-1}))</th>
<th>FM Dias</th>
<th>AP (cm)</th>
<th>AE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX 9610</td>
<td>6274</td>
<td>55</td>
<td>233</td>
<td>115</td>
<td>CO 34</td>
<td>7942</td>
<td>52</td>
<td>215</td>
<td>105</td>
</tr>
<tr>
<td>30F45</td>
<td>6069</td>
<td>53</td>
<td>255</td>
<td>133</td>
<td>C747</td>
<td>7866</td>
<td>54</td>
<td>188</td>
<td>104</td>
</tr>
<tr>
<td>AGROMEN 2E2</td>
<td>6069</td>
<td>54</td>
<td>215</td>
<td>123</td>
<td>NB 7228</td>
<td>7808</td>
<td>53</td>
<td>195</td>
<td>108</td>
</tr>
<tr>
<td>XB 8010</td>
<td>5939</td>
<td>54</td>
<td>233</td>
<td>125</td>
<td>P 3041(T)</td>
<td>7758</td>
<td>57</td>
<td>228</td>
<td>117</td>
</tr>
<tr>
<td>Z 8392 (T)</td>
<td>5916</td>
<td>53</td>
<td>228</td>
<td>120</td>
<td>CDX 97SO1</td>
<td>7743</td>
<td>53</td>
<td>215</td>
<td>118</td>
</tr>
<tr>
<td>CO 32</td>
<td>5902</td>
<td>54</td>
<td>238</td>
<td>130</td>
<td>98 HS 16B</td>
<td>7710</td>
<td>53</td>
<td>203</td>
<td>113</td>
</tr>
<tr>
<td>C 701 (T)</td>
<td>5854</td>
<td>54</td>
<td>225</td>
<td>125</td>
<td>XB 8010</td>
<td>7662</td>
<td>53</td>
<td>204</td>
<td>101</td>
</tr>
<tr>
<td>Z 8466</td>
<td>5816</td>
<td>55</td>
<td>235</td>
<td>133</td>
<td>P 30F33</td>
<td>7652</td>
<td>53</td>
<td>213</td>
<td>114</td>
</tr>
<tr>
<td>XL 355</td>
<td>5760</td>
<td>56</td>
<td>220</td>
<td>120</td>
<td>SHS 5060</td>
<td>7579</td>
<td>51</td>
<td>153</td>
<td>54</td>
</tr>
<tr>
<td>Z 84E20</td>
<td>5732</td>
<td>53</td>
<td>218</td>
<td>128</td>
<td>XB 7012</td>
<td>7531</td>
<td>54</td>
<td>207</td>
<td>112</td>
</tr>
<tr>
<td>P 3041 (T)</td>
<td>5690</td>
<td>55</td>
<td>248</td>
<td>135</td>
<td>DINA 1000</td>
<td>7473</td>
<td>55</td>
<td>223</td>
<td>122</td>
</tr>
<tr>
<td>CO 34</td>
<td>5636</td>
<td>54</td>
<td>233</td>
<td>115</td>
<td>SH-70 Ex309</td>
<td>7347</td>
<td>51</td>
<td>209</td>
<td>105</td>
</tr>
<tr>
<td>HT 7105-3</td>
<td>5619</td>
<td>56</td>
<td>245</td>
<td>135</td>
<td>97 HT 18bC</td>
<td>7329</td>
<td>53</td>
<td>214</td>
<td>114</td>
</tr>
<tr>
<td>XB 7011</td>
<td>5576</td>
<td>58</td>
<td>228</td>
<td>125</td>
<td>CD 3121</td>
<td>7274</td>
<td>55</td>
<td>218</td>
<td>120</td>
</tr>
<tr>
<td>MTL 9729</td>
<td>5450</td>
<td>59</td>
<td>245</td>
<td>133</td>
<td>AG 6690</td>
<td>7244</td>
<td>54</td>
<td>211</td>
<td>104</td>
</tr>
<tr>
<td>XL 357</td>
<td>5348</td>
<td>55</td>
<td>208</td>
<td>120</td>
<td>ZENECA 8392(T)</td>
<td>7182</td>
<td>51</td>
<td>196</td>
<td>109</td>
</tr>
<tr>
<td>CD 3121</td>
<td>5300</td>
<td>58</td>
<td>243</td>
<td>130</td>
<td>CO 32</td>
<td>7037</td>
<td>53</td>
<td>194</td>
<td>102</td>
</tr>
<tr>
<td>SHS 4040</td>
<td>5232</td>
<td>55</td>
<td>238</td>
<td>128</td>
<td>R&G 01*</td>
<td>7018</td>
<td>52</td>
<td>219</td>
<td>115</td>
</tr>
<tr>
<td>R&G 01E</td>
<td>5218</td>
<td>56</td>
<td>235</td>
<td>130</td>
<td>NB 5318</td>
<td>6961</td>
<td>52</td>
<td>200</td>
<td>105</td>
</tr>
<tr>
<td>983-P</td>
<td>5203</td>
<td>58</td>
<td>235</td>
<td>135</td>
<td>2E2</td>
<td>6842</td>
<td>53</td>
<td>192</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>BRS 3150</td>
<td>6801</td>
<td>52</td>
<td>209</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>CDX 99 TO 5</td>
<td>6747</td>
<td>55</td>
<td>214</td>
<td>118</td>
</tr>
<tr>
<td>Média*</td>
<td>5125</td>
<td>55</td>
<td>229</td>
<td>124</td>
<td>Média*</td>
<td>6678</td>
<td>53</td>
<td>207</td>
<td>110</td>
</tr>
</tbody>
</table>

C.V. (%) 10
D.M.S. (5%) 1036

*Média calculada a partir do rendimento de grãos (kg.ha\(^{-1}\)) dos cultivares de ciclo precoce avaliados

Em Capinópolis–MG, em 1998/1999, sobressaiu o cultivar CX 9610, com média de rendimento de grãos de 6.274 kg.ha\(^{-1}\), não diferindo significativamente daqueles que produziram até 5.300 kg.ha\(^{-1}\). O início do florescimento masculino variou de 53 a 59 dias após a emergência, com
média de 55 dias. Quanto às alturas de planta e de espigas, as médias foram de 229 e 124 cm, respectivamente. Em 1999/2000, o cultivar com melhor rendimento de grãos foi CO 34, com média de 7.942 kg ha\(^{-1}\). No entanto, não houve diferença entre os cultivares que superaram a média de rendimento de grãos do ensaio. A média do começo do florescimento masculino foi de 53 dias após a emergência, com variação de 51 a 57 dias, nos cultivares que superaram a média do ensaio. Nos cultivares que superaram a média de rendimento de grãos do ensaio, a altura de planta variou de 153 a 228 cm, e a altura de espiga, de 54 a 122 cm.

As médias das características avaliadas nos cultivares de ciclo precoce, que superaram as médias de rendimento de grãos do ensaio conduzido em Ponte Nova–MG, estão no Quadro 7.

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>RG (kg ha(^{-1}))</th>
<th>FM dias</th>
<th>AP (cm)</th>
<th>AE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 747</td>
<td>8889</td>
<td>50</td>
<td>198</td>
<td>105</td>
</tr>
<tr>
<td>Z 84E20</td>
<td>8555</td>
<td>50</td>
<td>198</td>
<td>120</td>
</tr>
<tr>
<td>P 30F33</td>
<td>8333</td>
<td>50</td>
<td>200</td>
<td>113</td>
</tr>
<tr>
<td>AG 8014</td>
<td>8111</td>
<td>50</td>
<td>213</td>
<td>128</td>
</tr>
<tr>
<td>XB 7011</td>
<td>8000</td>
<td>50</td>
<td>223</td>
<td>125</td>
</tr>
<tr>
<td>SHS 5060</td>
<td>7889</td>
<td>50</td>
<td>218</td>
<td>120</td>
</tr>
<tr>
<td>C 701 (T)</td>
<td>7722</td>
<td>50</td>
<td>218</td>
<td>128</td>
</tr>
<tr>
<td>Z 8466</td>
<td>7555</td>
<td>50</td>
<td>225</td>
<td>130</td>
</tr>
<tr>
<td>MTL 9729</td>
<td>7555</td>
<td>50</td>
<td>253</td>
<td>150</td>
</tr>
<tr>
<td>P 3041 (T)</td>
<td>7389</td>
<td>50</td>
<td>210</td>
<td>125</td>
</tr>
<tr>
<td>P 3071</td>
<td>7278</td>
<td>50</td>
<td>210</td>
<td>123</td>
</tr>
<tr>
<td>HT 971011</td>
<td>7278</td>
<td>50</td>
<td>213</td>
<td>138</td>
</tr>
<tr>
<td>CX 9610</td>
<td>7222</td>
<td>50</td>
<td>198</td>
<td>113</td>
</tr>
<tr>
<td>30F45</td>
<td>7222</td>
<td>50</td>
<td>220</td>
<td>130</td>
</tr>
<tr>
<td>XL 357</td>
<td>7167</td>
<td>50</td>
<td>213</td>
<td>128</td>
</tr>
<tr>
<td>DINA 657</td>
<td>7167</td>
<td>50</td>
<td>215</td>
<td>123</td>
</tr>
<tr>
<td>XL 355</td>
<td>7111</td>
<td>50</td>
<td>220</td>
<td>133</td>
</tr>
<tr>
<td>CO 32</td>
<td>6889</td>
<td>50</td>
<td>208</td>
<td>113</td>
</tr>
<tr>
<td>SHS 4040</td>
<td>6833</td>
<td>50</td>
<td>233</td>
<td>135</td>
</tr>
<tr>
<td>XL 550</td>
<td>6833</td>
<td>50</td>
<td>213</td>
<td>118</td>
</tr>
<tr>
<td>CX 9856</td>
<td>6778</td>
<td>50</td>
<td>213</td>
<td>98</td>
</tr>
</tbody>
</table>

Continua…
QUADRO 7 – Continuação.

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>RG (kg.ha(^{-1}))</th>
<th>FM dias</th>
<th>AP (cm)</th>
<th>AE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT 7105-3</td>
<td>6778</td>
<td>50</td>
<td>218</td>
<td>128</td>
</tr>
<tr>
<td>NB 6077</td>
<td>6778</td>
<td>50</td>
<td>218</td>
<td>138</td>
</tr>
<tr>
<td>Média*</td>
<td>6764</td>
<td>50</td>
<td>213</td>
<td>121</td>
</tr>
<tr>
<td>C.V.(%)</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.M.S. (5%)</td>
<td>2304</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Média calculada a partir do rendimento de grãos (kg ha\(^{-1}\)) dos cultivares de ciclo precoce avaliados

Neste ensaio, não houve diferenças significativas de rendimento entre os cultivares que superaram a média de rendimento de grãos do ensaio, sendo o C 747, com média de 8.889 kg.ha\(^{-1}\), o de melhor desempenho. O início do florescimento masculino ocorreu aos 50 dias após a emergência. Nos cultivares que superaram a média de rendimento de grãos do ensaio, a altura de planta variou de 198 a 253 cm, e a altura de espiga, de 98 a 150 cm, com média de 121 cm.

Em 1998/1999, as médias de rendimento de grãos foram de 10.199 kg.ha\(^{-1}\) em Coimbra, 5.125 kg.ha\(^{-1}\) em Capinópolis e 5.690 kg.ha\(^{-1}\) em Ponte Nova. Em 1999/2000, as médias de rendimentos de grãos foram de 6.152 kg.ha\(^{-1}\) em Coimbra e 6.678 kg.ha\(^{-1}\) em Capinópolis.

Entre os 15 cultivares de ciclo precoce avaliados nos dois anos e três locais, apenas o P 3041 superou as médias de rendimento de grãos dos ensaios, mostrando a interação cultivares x anos x locais; dessa forma, este cultivar pode ser considerado o de maior estabilidade entre os de ciclo precoce. Comportamento semelhante ao do P 3041 foi relatado por Morello et al. (8) em trabalho realizado no Estado de Tocantins, onde obteve média de 6.159 kg.ha\(^{-1}\), não diferindo significativamente do cultivar de maior média do ensaio, e, ainda, apresentou o coeficiente de regressão \(B_{ii} \) igual a 1, que, segundo o método proposto por Eberhart e Russel (5), descrito por Cruz e Regazzi (4), considera os cultivares com adaptabilidade geral ou ampla. No entanto, Muniz et al. (9) e Monteiro et al. (7) encontraram resultados distintos, uma vez que classificaram o P 3041 como cultivar de adaptação específica a ambientes favoráveis, pois encontraram valores de \(B_{ii} \) maiores que 1.

Isso mostra que, apesar da grande disponibilidade de cultivares no mercado, grande parte pode não apresentar estabilidade satisfatória, comprometendo a escolha do cultivar pelos agricultores. Dessa forma, a avaliação de cultivares em pelo menos dois anos de cultivos é de grande importância para o fornecimento de informações mais confiáveis do comportamento deles.
Cultivares de ciclo normal

Os resultados referentes às características dos cultivares de ciclo normal, que superaram as médias de rendimento de grãos nos ensaios realizados em Coimbra, podem ser observados no Quadro 8.

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>RG (kg.ha(^{-1}))</th>
<th>FM</th>
<th>AP (cm)</th>
<th>AE (cm)</th>
<th>Cultivares</th>
<th>RG (kg.ha(^{-1}))</th>
<th>FM</th>
<th>AP (cm)</th>
<th>AE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT 970556</td>
<td>12132</td>
<td>65</td>
<td>225</td>
<td>125</td>
<td>98 HD 2B</td>
<td>8708</td>
<td>66</td>
<td>196</td>
<td>97</td>
</tr>
<tr>
<td>EXP 2</td>
<td>11257</td>
<td>59</td>
<td>245</td>
<td>118</td>
<td>AX 4545</td>
<td>7888</td>
<td>67</td>
<td>205</td>
<td>114</td>
</tr>
<tr>
<td>BRS 3000 (T)</td>
<td>11014</td>
<td>66</td>
<td>256</td>
<td>138</td>
<td>MTC 828 U</td>
<td>7860</td>
<td>67</td>
<td>210</td>
<td>109</td>
</tr>
<tr>
<td>CO – 9621</td>
<td>10804</td>
<td>62</td>
<td>257</td>
<td>149</td>
<td>MTC 875 U</td>
<td>7648</td>
<td>65</td>
<td>203</td>
<td>108</td>
</tr>
<tr>
<td>HD 9555</td>
<td>10632</td>
<td>60</td>
<td>250</td>
<td>140</td>
<td>C333 B(T)</td>
<td>7524</td>
<td>68</td>
<td>217</td>
<td>128</td>
</tr>
<tr>
<td>HT 111301</td>
<td>10627</td>
<td>64</td>
<td>210</td>
<td>145</td>
<td>HS TR 3</td>
<td>7397</td>
<td>65</td>
<td>191</td>
<td>108</td>
</tr>
<tr>
<td>AG 4051</td>
<td>10607</td>
<td>62</td>
<td>256</td>
<td>140</td>
<td>97 HT 129 QPM</td>
<td>7243</td>
<td>64</td>
<td>204</td>
<td>116</td>
</tr>
<tr>
<td>XB 7012</td>
<td>10374</td>
<td>65</td>
<td>238</td>
<td>125</td>
<td>CO 9621</td>
<td>7212</td>
<td>66</td>
<td>210</td>
<td>107</td>
</tr>
<tr>
<td>IAC 0410E</td>
<td>10261</td>
<td>59</td>
<td>260</td>
<td>135</td>
<td>97 HT 31 a C</td>
<td>7204</td>
<td>67</td>
<td>203</td>
<td>107</td>
</tr>
<tr>
<td>C 333B (T)</td>
<td>10190</td>
<td>64</td>
<td>238</td>
<td>123</td>
<td>P 30F68</td>
<td>7109</td>
<td>66</td>
<td>182</td>
<td>99</td>
</tr>
<tr>
<td>R&G 02E</td>
<td>10187</td>
<td>63</td>
<td>243</td>
<td>132</td>
<td>BRS 4150</td>
<td>7028</td>
<td>67</td>
<td>205</td>
<td>105</td>
</tr>
<tr>
<td>P 3021</td>
<td>10064</td>
<td>58</td>
<td>232</td>
<td>128</td>
<td>97 HT 124 QPM</td>
<td>6876</td>
<td>65</td>
<td>199</td>
<td>105</td>
</tr>
<tr>
<td>CX 9805</td>
<td>9906</td>
<td>60</td>
<td>218</td>
<td>92</td>
<td>IEI</td>
<td>6863</td>
<td>64</td>
<td>199</td>
<td>105</td>
</tr>
<tr>
<td>Z 85E03</td>
<td>9877</td>
<td>58</td>
<td>214</td>
<td>100</td>
<td>BRS 2114(T)</td>
<td>6845</td>
<td>66</td>
<td>206</td>
<td>100</td>
</tr>
<tr>
<td>Z 85E02</td>
<td>9825</td>
<td>58</td>
<td>223</td>
<td>65</td>
<td>P 30F80</td>
<td>6813</td>
<td>67</td>
<td>204</td>
<td>111</td>
</tr>
<tr>
<td>AL 25/XV</td>
<td>9763</td>
<td>59</td>
<td>273</td>
<td>145</td>
<td>AX 3676</td>
<td>6803</td>
<td>68</td>
<td>203</td>
<td>115</td>
</tr>
<tr>
<td>97HT129QPM</td>
<td>9712</td>
<td>62</td>
<td>267</td>
<td>133</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Média*</td>
<td>9645</td>
<td>62</td>
<td>240</td>
<td>125</td>
<td>Média*</td>
<td>6729</td>
<td>66</td>
<td>200</td>
<td>108</td>
</tr>
<tr>
<td>C.V.(#)</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>C.V.(#)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.M.S. (5%) 1772 D.M.S. (5%) 2315

*Média calculada a partir do rendimento de grãos (kg ha\(^{-1}\)) dos cultivares de ciclo normal avaliados

No ano agrícola de 1998/1999, sobressaiu o cultivar HT 970556, com média de rendimento de grãos de 12.132 kg.ha\(^{-1}\), não se diferenciando significativamente, no entanto, dos cultivares que produziram até 10.374 kg.ha\(^{-1}\). Quanto ao florescimento masculino, a média foi de 62 dias após a emergência. O HT 970556 ficou entre os mais tardios, pois o florescimento masculino iniciou aos 65 dias após a emergência. Quanto a alturas de planta e de espiga, as médias foram de 240 e 125 cm, respectivamente. No ano de 1999/2000, o cultivar de melhor desempenho foi o 98 HD 2B, com média de rendimento de grãos de 8.708 kg.ha\(^{-1}\), não diferindo significativamente dos cultivares que superaram a média do ensaio. Quanto ao florescimento masculino, a média foi de 66 dias após a emergência. As médias de alturas de planta e de espiga foram de 200 e 108 cm, respectivamente.

As médias das características dos cultivares de ciclo normal que superaram as médias de rendimento de grãos nos ensaios realizados em Capinópolis encontram-se no Quadro 9.
Em 1998/1999, o cultivar mais produtivo foi o P 30F80, com média de 6.178 kg.ha\(^{-1}\), não diferindo significativamente dos que produziram até 4.876 kg.ha\(^{-1}\). Com relação ao florescimento masculino, a média foi de 54 dias após a emergência. Quanto às alturas de planta e de espiga, variaram de 213 a 265 cm e de 105 a 153 cm, respectivamente. Em 1999/2000, os cultivares que superaram a média do ensaio não diferiram entre si quanto ao rendimento de grãos, sendo o PL 6880 o mais produtivo, com 7.792 kg.ha\(^{-1}\). Quanto ao início do florescimento masculino, houve variação de 51 a 58 dias após a emergência, com média de 54 dias. A média de altura de planta foi de 219 cm, e a média de altura de espigas, de 118 cm.

QUADRO 9 - Médias do rendimento de grãos (RG), florescimento (FM), altura de planta (AP) e altura de espigas (AE), apresentadas pelos cultivares de milho de ciclo normal que superaram a média de peso de grãos dos ensaios conduzidos em Capinópolis–MG, nos anos agrícolas de 1998/1999 e 1999/2000

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RG (kg.ha(^{-1}))</td>
<td>FM Dias</td>
</tr>
<tr>
<td>P 30F80</td>
<td>6178</td>
<td>56</td>
</tr>
<tr>
<td>Z 85E02</td>
<td>5847</td>
<td>53</td>
</tr>
<tr>
<td>C 333B (T)</td>
<td>5580</td>
<td>58</td>
</tr>
<tr>
<td>CX 9805</td>
<td>5310</td>
<td>53</td>
</tr>
<tr>
<td>Z 85E50</td>
<td>5253</td>
<td>54</td>
</tr>
<tr>
<td>P 3021</td>
<td>5179</td>
<td>55</td>
</tr>
<tr>
<td>AG 4051</td>
<td>5038</td>
<td>56</td>
</tr>
<tr>
<td>P 30K75</td>
<td>4876</td>
<td>55</td>
</tr>
<tr>
<td>P 3027</td>
<td>5017</td>
<td>56</td>
</tr>
<tr>
<td>CX 9806</td>
<td>4893</td>
<td>55</td>
</tr>
<tr>
<td>BRS 2110</td>
<td>4607</td>
<td>55</td>
</tr>
<tr>
<td>Z 85E03</td>
<td>4594</td>
<td>54</td>
</tr>
<tr>
<td>CO – 9621</td>
<td>4471</td>
<td>58</td>
</tr>
<tr>
<td>HD 9555</td>
<td>4441</td>
<td>55</td>
</tr>
<tr>
<td>AGROMEN 1EI</td>
<td>4302</td>
<td>53</td>
</tr>
</tbody>
</table>

| C.V. (%) | 15 | C.V. (%) | 9 |
| D.M.S. (5%) | 1312 | D.M.S. 5%) | 1241 |

Média calculada a partir do rendimento de grãos (kg ha\(^{-1}\)) dos cultivares de ciclo normal avaliados
Estão inseridas no Quadro 10 as características dos cultivares de ciclo normal que superaram as médias de rendimento de grãos do ensaio conduzido em Ponte Nova.

O CX 9806 foi o de melhor desempenho em relação ao rendimento de grãos, com a média de 7.856 kg.ha\(^{-1}\), não diferindo significativamente dos demais cultivares que superaram a média do ensaio. O florescimento masculino começou aos 51 dias após a emergência. A altura de planta variou de 175 a 240 cm e a altura de espiga de 94 a 155 cm.

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>RG (kg.ha(^{-1}))</th>
<th>FMDias</th>
<th>AP (cm)</th>
<th>AE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX 9806</td>
<td>7856</td>
<td>51</td>
<td>238</td>
<td>123</td>
</tr>
<tr>
<td>EXP 2</td>
<td>7787</td>
<td>51</td>
<td>215</td>
<td>123</td>
</tr>
<tr>
<td>Z 85E02</td>
<td>7461</td>
<td>51</td>
<td>220</td>
<td>108</td>
</tr>
<tr>
<td>AGROMEN 1E1</td>
<td>7338</td>
<td>51</td>
<td>203</td>
<td>108</td>
</tr>
<tr>
<td>IAC 0410E</td>
<td>7151</td>
<td>51</td>
<td>223</td>
<td>113</td>
</tr>
<tr>
<td>BRS 3060 (T)</td>
<td>7139</td>
<td>51</td>
<td>233</td>
<td>115</td>
</tr>
<tr>
<td>C 333B (T)</td>
<td>7122</td>
<td>51</td>
<td>228</td>
<td>115</td>
</tr>
<tr>
<td>97HT128QPM</td>
<td>6437</td>
<td>51</td>
<td>238</td>
<td>128</td>
</tr>
<tr>
<td>984-N</td>
<td>6339</td>
<td>51</td>
<td>193</td>
<td>105</td>
</tr>
<tr>
<td>BRS 2110</td>
<td>6318</td>
<td>51</td>
<td>203</td>
<td>110</td>
</tr>
<tr>
<td>P 30K75</td>
<td>6266</td>
<td>51</td>
<td>175</td>
<td>95</td>
</tr>
<tr>
<td>BRS 2114 (T)</td>
<td>6238</td>
<td>51</td>
<td>238</td>
<td>125</td>
</tr>
<tr>
<td>HT 970556</td>
<td>6237</td>
<td>51</td>
<td>210</td>
<td>140</td>
</tr>
<tr>
<td>Z 85E03</td>
<td>6229</td>
<td>51</td>
<td>203</td>
<td>105</td>
</tr>
<tr>
<td>AG 4051</td>
<td>6163</td>
<td>51</td>
<td>220</td>
<td>125</td>
</tr>
<tr>
<td>Z 85E50</td>
<td>5996</td>
<td>51</td>
<td>208</td>
<td>94</td>
</tr>
<tr>
<td>CO – 9621</td>
<td>5980</td>
<td>51</td>
<td>240</td>
<td>155</td>
</tr>
<tr>
<td>P 3021</td>
<td>5726</td>
<td>51</td>
<td>205</td>
<td>115</td>
</tr>
<tr>
<td>Média</td>
<td>5690</td>
<td>51</td>
<td>216</td>
<td>121</td>
</tr>
</tbody>
</table>

| C.V. (%) | 19 |
| D.M.S. | 2451 |

* Média calculada a partir do rendimento de grãos (kg ha\(^{-1}\)) dos cultivares de ciclo normal avaliados
Em 1998/1999, as médias de rendimento de grãos foram de 9.645 kg.ha\(^{-1}\) em Coimbra, 5.690 kg.ha\(^{-1}\) em Ponte Nova e 4.244 kg.ha\(^{-1}\) em Capinópolis. Em 1999/2000, foram de 6.729 kg.ha\(^{-1}\) em Coimbra e 6.500 kg.ha\(^{-1}\) em Capinópolis.

Em 1998/1999, em Coimbra, todos os experimentos deram médias, em relação ao rendimento de grãos, sempre acima de 9.600 kg.ha\(^{-1}\), chegando a 10.200 kg.ha\(^{-1}\) no experimento de cultivares de ciclo precoce. Essa alta média deve-se ao uso da irrigação, que tornou o ambiente mais adequado para a produção de milho, possibilitando aos cultivares a expressão do seu potencial genético. Mesmo não tendo o mesmo desempenho em Capinópolis e Ponte Nova, as médias de rendimento de grãos foram bastante superiores à média nacional de 3.000 kg.ha\(^{-1}\), ficando acima de 4.000 kg.ha\(^{-1}\) no experimento com a menor média.

Em 1999/2000, os ensaios com cultivares de ciclo normal conduzidos em Coimbra também deram a maior média de rendimento de grãos (6.729 kg.ha\(^{-1}\)). Quanto ao florescimento, foi observado, nos dois anos de avaliações, que os cultivares tiveram comportamento diferente em cada local. Em média, os cultivares foram dez dias mais precoces em Capinópolis, em comparação a Coimbra.

REFERÊNCIAS
