Potencial alelopático e identificação dos metabólitos secundários em extratos de Canavalia ensiformis L

Juliana Campana Pereira, Cynthiane Lins de Albuquerque Paulino, Bruna da Silva Granja, Antônio Euzébio Goulart Santana, Laurício Endres, Renan Cantalice de Souza

Resumo


As espécies que possuem potencial alelopático são promissoras na agricultura, diante da perspectiva da identificação e manipulação dos seus metabólitos secundários, para aplicações práticas e, assim, serem utilizadas no controle de plantas daninhas. Nesse contexto, esse trabalho teve por objetivo verificar o efeito alelopático e identificar os metabólitos secundários de Canavalia ensiformis L. Sementes de Lactuca sativa, Digitaria insularis, Emilia coccinea e Portulaca oleracea foram utilizadas como receptoras. Para avaliar o potencial alelopático, foi realizado o extrato etanólico da parte aérea da espécie doadora. Os efeitos potencialmente alelopáticos foram avaliados por meio de testes de germinação e crescimento inicial de plântulas. Foi realizada também, através da técnica da Cromatografia Líquida de Alta Eficiência, a identificação dos metabólitos secundários da parte aérea de C. ensiformis. O extrato etanólico proporciona maior inibição da porcentagem e índice de velocidade de germinação de L. sativa. A parte aérea de C. ensiformis contém ácidos fenólicos (ácido clorogênico, ácido ferúlico, ácido cafeico), flavonóides (kaempferol, naringina e rutina) e ácidos carboxílicos (ácido cítrico, ácido malônico e ácido aspártico), podendo ser os responsáveis pela atividade alelopática dessa espécie.


Palavras-chave


alelopatia; feijão-de-porco; fitoquímica

Referências


Al-Sherif E, Hegazy AK, Gomma NH & Hassan MO (2013) Allelopathic effect of black mustard tissues and root exudates on some crops and weeds. Planta Daninha, 31: 11-19.

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57: 233–266.

Ball GFM (2006) Vitamins in foods: Analysis, bioavailability, and stability. CRC Press, Boca Raton, 785p.

Blum U (1995) The value of model plant-microbe-soil systems for understanding processes associated with allelopathic interaction: one example. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: Organisms, Processes, and Applications. American Chemical Society. p. 127–131.

Borghetti F & Ferreira AG (2004) Interpretação de resultados de germinação. In: Ferreira AG, Borghetti F (Eds.). Germinação – do básico ao aplicado. Porto Alegre, Artmed. p. 209-222.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento (2009) Regras para análise de sementes. Brasília, Mapa/ACS. 395p.

Bubna GA, Lima RB, Zanardo DYL, Santos WD, Ferrarese MDLL & Ferrarese-Filho O (2011) Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max). Journal of Plant Physiology, 168: 1627–1633.

Buer CS & Djordjevic MA (2009) Architectural phenotypes in the transparent test a mutants of Arabidopsis thaliana. Journal of Experimental Botany, 60: 751–763.

Calegari A (1995) Leguminosas para adubação verde no Paraná, Circular, 80. Londrina, IAPAR . 118p.

Cavalcanti NB (2011) Influência de diferentes substratos na emergência e crescimento de plantas de feijão de porco (Canavalia ensiformis L.). Engenharia Ambiental, 8: 51-70.

Chon SU & Kim JD (2002) Biological activity and quantification of suspected allelochemicals from alfalfa plant parts. Journal of Agronomy and Crop Science, 188: 281-285.

Chon SU, Nelson CJ & Coutts JH (2003) Physiological assessment and path coefficient analysis to improve evaluation of alfalfa autotoxicity. Journal of Chemical Ecology, 29: 2413-2424.

Christoffoleti PJ (2002) Curvas de dose-resposta de biótipos resistente e suscetível de Bidens pilosa L. aos herbicidas inibidores da ALS. Scientia Agricola, 59: 513-519.

Christoffoleti PJ & López-Ovejero RF (2008) Resistência das plantas daninhas a herbicidas: definições, bases e situação no Brasil e no mundo. In: Christoffoleti PJ (Coord.). Aspectos de resistência de plantas daninhas a herbicidas. 3.ed. Piracicaba, HRAC-BR. p. 3-30.

Collins CH, Braga GL & Bonato OS (2006) Fundamentos de Cromatografia, Campinas, UNICAMP. 452p.

Ding J, Wang X, Zhang XW, Li Q & Luo M (2006) Optimization of RP-HPLC analysis of low molecular weght organic acids in soil. Journal of Liquid Chromatography & Related Technologies, 29: 99-112.

Ferrarese MLL, Souza NE, Rodrigues JD, Ferrarese Filho O (2000) Carbohydrate and lipid status in soybean roots influenced by ferulic acid uptake. Acta Physiologiae Plantarum, 23: 421-427.

Ferreira AG & Aquila MEA (2000) Alelopatia: uma área emergente da ecofisiologia. Revista Brasileira de Fisiologia Vegetal, 12: 175-204.

Fiorenza M, Dotto DB, Bolignon AA, Bolignon AA, Atahyde ML & Vestena S (2016) Análise fitoquímica e atividade alelopática de extratos de Eragrostis plana Nees (capim-annoni). Iheringia, 71: 193-200.

Franco DM, Saldanha LL, Neto JSL, Santos LC, Dokkedal AL & Almeida LFR (2016) Seasonal variation in allelopathic potential of the leaves of Copaifera langsdorffii Desf. Acta Botanica Brasilica, 30: 157-165.

Golisy A, Lata B, Gawronski S & Fujii Y (2007) Specific and total activities of the allelochemicals identified in buckwheat. Weed Biology and Management, 7: 164–171.

Hagemann TR, Benin G, Lemes C, Marchese JA, Martin TN, Pagliosa ES & Beche E (2010) Potencial alelopático de extratos aquosos foliares de aveia sobre azevém e amendoim-bravo. Bragantia, 69: 509-518.

Hajimehdipoor H, Kondori BM, Amin GR, Adib N, Rastegar H, Shekarch M (2012) Development of a validated HPLC method for the simultaneous determination of flavonoids in Cuscuta chinensis Lam. by ultra-violet detection. Journal of Pharmaceutical Science, 20: 1-6.

Hoagland RE & Williams RD (2004) Bioassays-useful tolls of the study of allelopathy. In: Macias FA, Galindo JCG, Molinillo JMG & Cutler HG (Eds.) Allelopathy: Chemistry and mode of action of allelochemicals. Boca Raton, CRC Press. p. 315-41.

Jabran K & Farooq M (2013) Implications of potential allelopathic crops in agricultural systems. In: Cheema ZA, Farooq M & Wahid A (Eds.) Allelopathy Current Trends and Future Applications. Springer-Verlag, p. 349–385.

Larcher W (2000) Ecofisiologia Vegetal. São Carlos, Rima Artes e Textos. 531p.

Loffredo E, Monaci L & Senesi N (2005) Humic Substances Can Modulate the Allelopathic Potential of Caffeic, Ferulic, and Salicylic Acids for Seedlings of Lettuce (Lactuca sativa L.) and Tomato (Lycopersicon esculentum Mill.). Journal of Agricultural and Food Chemistry, 53: 9424-9430.

Maguire JD (1962) Speeds of germination-aid selection and evaluation for seedling emergence and vigor. Crop Science, 2: 176-177.

Marinov-Serafimov P (2010) Determination of allelopathic effect of some invasive weed species on germination and initial development of grain legume crops. Pesticides & Phytomedicine, 25: 251-259.

Mendes IDS & Rezende MAO (2014) Assessment of the allelopathic effect of leaf and seed extracts of Canavalia ensiformis as postemergent bioherbicides: A green alternative for sustainable agriculture. Journal of Environmental Science and Health, 49: 374-380.

Mendonça R (2008) Determinação de aleloquímicos por HPLC/UV-Vis em extratos aquosos de sementes de Canavalia ensiformis e estudo da atividade alelopática. Dissertação (Mestrado em Agronomia) – Universidade de São Paulo, São Carlos, 82 f.

Oliveira MNS, Simoes MOM, Ribeiro LM, Lopes PSN, Gusmão E & Dias BAS (2005) Efeitos alelopáticos de seis espécies arbóreas da família Fabaceae. Unimontes Científica, 7: 121-128.

Oliveira PVA, França SC, Bregagnoli M & Pereira OS (2011) Avaliação alelopática de Tithonia diversifolia na germinação e no crescimento inicial de Bidens pilosa e Brachiaria brizantha. Revista Agroambiental, 3: 23-30.

Peer DE, Brown BW, Tague GK, Muday L & Murphy TAS (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiology, 126: 536–548.

Peer WA & Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends in Plant Science, 12: 556–563.

Rice EL (2013) Allelophathy. Ed. New York, Academic press. p. 421.

Santos S, Moraes MLL & Rezende MOO (2007) Allelopathic potential and systematic evaluation of secondary compounds in extracts from roots of Canavalia ensiformis by capillary electrophoresis. Eclética Química, 32: 13-18.

Santos S, Moraes MLL, Rezende MOO, Souza Filho APS (2011) Potencial alelopático e identificação de compostos secundários em extratos de calopogônio (Calopogonium mucunoides) utilizando eletroforese capilar. Eclética Química, 36: 51-68.

Santos S, Moraes MLL, Souza Filho APS & Rezende MOO (2005) Allelopathic Potential and Systematic Evaluation ot Organic Extracts trom Canavalia ensiformis Leaves (Jack Beans). Journal of Emironmenlat Science and Heallh, 40: 77-84.

Shahidi F & Naczk M (1995) Food phenolics: sources, chemistry, effects and applications. Lancaster, Technomic. 331p.

Shimoji H & Yamasaki H (2005) Inhibitory effects of flavonoids on alternative respiration of plant mitochondria. Biologia Plantarum, 49: 117-119.

Silva RMG, Saraiva TS, Silva RB, Gonçalves LA & Pereira L (2010) Potencial alelopático de extrato etanólico de Anadenanthera macrocarpa e Astronium graveolens. Bioscience Journal, 26: 632-637.

Souza Filho APS (2002) Atividade potencialmente alelopática de extratos brutos e hidroalcoolicos de feijão-de-porco (Canavalia ensiformis). Planta Daninha, 20: 357-364.

Streibig JC (1988) Herbicide bioassay. Weed Research, 28: 497-484.

Taiz L & Zeiger E. Fisiologia vegetal. 5.ed. Porto Alegre, Artmed. 954p.

Taveira LKPD, Silva MAP & Loiola MIB (2013) Allelopathy in five species of Erythroxylum. Acta Scientiarum, 35: 325-331.

Weir TL, Park SW & Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology, 7: 472 - 479.

Zimdahl RL (2007) Fundamentals of Weed Science, 3.ed. London, Academic Press. 666p.


Apontamentos

  • Não há apontamentos.